1 Simple Compound Interest

Suppose you have \(x \) dollars to invest at an interest rate of \(r \) percent per year. In one year you will have \(y \) dollars, where

\[
y = x + rx = x(1 + r)
\]

in two years

\[
y = [x(1 + r)](1 + r) = x(1 + r)^2
\]

in three years

\[
y = [x(1 + r)^2](1 + r) = x(1 + r)^3
\]

The present value (PV) of \(y \) 3 years from now is

\[
x = \frac{y}{(1 + r)^3} = y(1 + r)^{-3}
\]

PV: Tells you "how much to invest now" in order to have \(y \) dollars in 3 years.
1.1 Compounding Within a Year

1. (a) Semi-annual compounding
 at six months
 \[y = x \left(1 + \frac{r}{2}\right) = x + \frac{xr}{2} \]
 at one year
 \[y = \left[x \left(1 + \frac{r}{2}\right)\right] \left(1 + \frac{r}{2}\right) = x \left(1 + \frac{r}{2}\right)^2 \]

 (b) Monthly compounding
 \[y = x \left(1 + \frac{r}{12}\right)^{12} \text{ for one year} \]
 \[y = \left[x \left(1 + \frac{r}{12}\right)^{12}\right] \left(1 + \frac{r}{2}\right) = x \left(1 + \frac{r}{12}\right)^{24} \text{ for two years} \]
 \[y = x \left(1 + \frac{r}{12}\right)^{12n} \text{ for } n \text{ years} \]

1.2 Converting Compound Interest into an Annual Yield

Suppose you are offered a choice:

1. 10% compounded semi-annually, or
2. 10.2% annually

Which would you choose?

We know for semi-annual
\[y = x \left(1 + \frac{r}{2}\right)^2 = x \left(1 + \frac{10}{2}\right)^2 = (1.05)^2 x \]
\[y = 1.1025x \]
Yield = $y - \text{principal} = y - x$

Yield = 1.1025$x - x = 0.1025x$ or you can earn 10.25% annually since 10.25% > 10.20% \implies Pick option (1)

1.3 Continuous Compounding

1. (a) Daily interest for one year

\[y = x \left(1 + \frac{r}{365}\right)^{365} \]

Suppose $x=$$1 and $r=100\%$ (or $r=1$)

\[y = 1 \left(1 + \frac{1}{365}\right)^{365} = 2.71456 \]

(b) Compound hourly ($365 \times 24=8760$)

\[y = x \left(1 + \frac{1}{8760}\right)^{8760} = 2.71812 \]

or if

\[y = 1 \left(1 + \frac{1}{m}\right)^{m} \]

if we let $m \implies$ infinity (∞)

\[y = \left(1 + \frac{1}{m}\right)^{m} \implies 2.71828\ldots \equiv e \]

for any r as $m \rightarrow \infty \{\text{and } x = \$1\}$

\[y = \left(1 + \frac{1}{m}\right)^{m} \implies e^{r} \]
2 The Number "e"

The number $e = 2.71828...$ is the value of 1 compounded continuously for one year (or one period) at an interest rate of 100%.

Continuous compounding at r percent for t years of a principal equal to x

$$y = xe^{rt}$$

The present value of y is

$$x = \frac{y}{e^{rt}} = ye^{-rt}$$

which tells you the amount needed to invest today that will be worth y dollars in t years of continuous compounding

Present Value (xe^{rt}) Graphically

Slope $= \frac{dy}{dt} = rxe^{rt}$

4
3 Derivative rules of e

1.

 \[y = e^x \quad \frac{dy}{dx} = e^x \]

2.

 \[y = e^{f(x)} \quad \frac{dy}{dx} = f'(x)e^{f(x)} \]

3. Examples:

 (a) \(y = e^{3x} \) \quad \frac{dy}{dx} = 3e^{3x}

 (b) \(y = e^{-rt} \) \quad \frac{dy}{dt} = -re^{-rt}

 (c) \(y = ae^{(t^2-t)} \) \quad \frac{dy}{dt} = a(2t-1)e^{(t^2-t)}

4.

 \[e^{-\infty} = \frac{1}{e^{\infty}} \approx 0 \quad e^0 = 1 \]

3.1 Growth Rates

Given

\[y = xe^{rt} \]

The change in \(y \) is

\[\frac{dy}{dt} = rxe^{rt} = ry \]

However, the percentage change in \(y \), or the "growth rate" is

\[\text{Growth Rate} = \frac{\Delta \ln y}{y} \approx \frac{dy}{y} \]

Therefore

\[\text{Growth Rate} = \frac{\frac{dy}{dt}}{y} = \frac{rxe^{rt}}{xe^{rt}} = r \]
Where \(r \) is the continuous rate of growth of \(y \) over time. NOTE: the growth rate is constant, however, the slope of \(y = xe^{rt} \) is not constant.

4 Logarithms

4.1 Common Log (or log base 10)

Given

\[10^2 = 100 \]

The exponent 2 is defined as the logarithm of 100 to the base 10.

eg.

\[\log 1000 = 3 \quad \text{because} \quad \{10^3 = 1000\} \]
\[\log 10 = 1 \quad \text{because} \quad 10^1 = 10 \]
\[\log 1 = 0 \quad \text{because} \quad 10^0 = 1 \]
\[\log 0.1 = -1 \quad \text{because} \quad 10^{-1} = .1 \]
\[\log 0.01 = -2 \quad \text{because} \quad 10^{-2} = .001 \]

4.2 Natural Logarithm

If \(y = e^x \) \(\ln y = \ln e^x = x \) where \(ln \) is the logarithm to base \(e \)

4.3 Rules of Logarithms

1. \(\ln(AB) = \ln A + \ln B \)
2. \(\ln \left(\frac{A}{B}\right) = \ln A - \ln B \)
3. \(\ln(A^b) = b \ln A \)
4.3.1 Example:
\[\ln(x^3y^2) = 3\ln x + 2\ln y \]

4.3.2 Other Properties

if \(x = y \) then \(\ln x = \ln y \)
if \(x > y \) then \(\ln x > \ln y \)

**\(\ln(-3) \) does NOT exist!! You cannot take a logarithm of a negative number.
**\(\ln(A + B) \neq \ln A + \ln B \)!!

5 Derivatives of the Natural Logarithm

1. \(y = \ln x \quad \frac{dy}{dx} = \frac{1}{x} \) or \(dy = \frac{dx}{x} \)

2. \(y = \ln ax \quad \frac{dy}{dx} = \frac{a}{ax} = \frac{1}{x} \)

 OR \(y = \ln ax = \ln x + \ln a \)

 \[\frac{dy}{dx} = \frac{1}{x} \left\{ \text{since} \quad \frac{d(\ln a)}{dx} = 0 \right\} \]

3. \(y = \ln(x^2 + 2x) \)

 \[\frac{dy}{dx} = \frac{1}{x^2+2x} (2x + 2) = \frac{2x+2}{x^2+2x} = \frac{1}{x+2} + \frac{1}{x} \]

 OR \(y = \ln(x^2 + 2x) = \ln [(x + 2) x] = \ln(x + 2) + \ln x \)

 \[\frac{dy}{dx} = \frac{1}{x+2} + \frac{1}{x} \]
6 Optimal Timing Problems

6.1 The Forest Harvesting Problem

Assume a stand of trees grows according to the following function

\[V(t) = Ae^{\alpha - \beta t} \quad \{ \text{measured in (ft)}^3 \} \]

Question: When is the best time to harvest the stand of trees?

· For simplicity, assume that the price per ft3 for lumber is $1 and it remains constant over time

· if the market rate of interest is r then the problem is to choose a time to harvest the trees that maximizes the present value of the asset
at any time, t_0 the present value is:

$$PV = V(t_0) e^{-rt_0}$$
$$= \left(A e^{\alpha-\frac{\beta}{t_0}} \right) e^{-rt}$$
$$PV = A e^{\alpha-\frac{\beta}{\tau}-rt}$$
Optimal harvest time: t_3

Maximum present value: $PV_3 \left\{ \frac{V'_3}{V_3} = r \right\}$

At V_1 the growth rate of trees exceeds the growth rate of a financial asset since $\left(\frac{V_1(t)'}{V_1} > r \right)$

Present Value is

$$PV(t) = V(t)e^{-rt}$$

$$PV(t) = Ae^{\alpha - \frac{\beta}{t} - rt} \quad \left\{ V(t) = Ae^{\alpha - \frac{\beta}{t}} \right\}$$

Max PV with respect to $t \left\{ \frac{dPV}{dt} = 0 \right\}$

$$\frac{dPV}{dt} = Ae^{\alpha - \frac{\beta}{t} - rt} \left(\frac{\beta}{t^2} - r \right) = 0$$

$$\frac{dPV}{dt} = 0 \quad \text{If} \quad \frac{\beta}{t^2} - r = 0$$

10
Therefore
\[\frac{\beta}{t^2} = r \text{ or } t = \sqrt{\frac{\beta}{r}} \]

Logarithmic Approach

\[
\ln PV = \ln(e^{\alpha - \frac{\beta}{t^2} - rt}) = \alpha - \frac{\beta}{t} - rt
\]

\[
\frac{d(\ln PV)}{dt} = \frac{dPV}{dt} = \frac{\beta}{t^2} - r = 0
\]

\[
= \frac{\beta}{t^2} = r \quad \left\{ \begin{array}{l}
\frac{\beta}{t^2} = \text{growth rate of the value of uncut trees} \\
r = \text{growth rate of the optimally invested money}
\end{array} \right.
\]
\[\beta \] = the growth in your wealth from leaving trees uncut
\[r \] = Growth in your wealth if you cut down the trees, sell them, and put the money into a savings account paying \(e^{rt} \)

Comparative Statistics: if interest rate rises: \(r \rightarrow r' \) then the optimal cutting time falls: \(t^* \rightarrow t' \)